Rtęć

Rtęć
złoto ← rtęć → tal
Cd

Hg

Cn
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
Triclinic.svg
80
Hg
Wygląd
srebrzystobiały
Rtęć
Widmo emisyjne rtęci
Widmo emisyjne rtęci
Ogólne informacje
Nazwa, symbol, l.a.

rtęć, Hg, 80
(łac. hydrargyrum)

Grupa, okres, blok

12, 6, d

Stopień utlenienia

I, II

Właściwości metaliczne

metal przejściowy

Właściwości tlenków

średnio zasadowe

Masa atomowa

200,59 ± 0,01[a][5]

Stan skupienia

ciekły

Gęstość

13 534 kg/m³[6]

Temperatura topnienia

−38,83 °C[1]

Temperatura wrzenia

357 °C[2]

Numer CAS

7439-97-6

PubChem

23931

Właściwości atomowe
Promień
atomowy
walencyjny
van der Waalsa


150 (obl. 171) pm
149 pm
155 pm

Konfiguracja elektronowa

[Xe]4f145d106s2

Zapełnienie powłok

2, 8, 18, 32, 18, 2
(wizualizacja powłok)

Elektroujemność
• w skali Paulinga
• w skali Allreda


2,00
1,44

Potencjały jonizacyjne

I 1007,1 kJ/mol
II 1810 kJ/mol
III 3300 kJ/mol

Właściwości fizyczne
Ciepło parowania

59,229 kJ/mol

Ciepło topnienia

2,295 kJ/mol

Ciśnienie pary nasyconej

2×10−4 Pa (234 K)

Konduktywność

1,04×106 S/m

Ciepło właściwe

140 J/(kg·K)

Przewodność cieplna

8,34 W/(m·K)

Układ krystalograficzny

trójskośny

Twardość
• w skali Mohsa


1,5

Prędkość dźwięku

1407 m/s (293,15 K)

Objętość molowa

14,09×10−6 m³/mol[7][b]

Najbardziej stabilne izotopy
izotop wyst. o.p.r. s.r. e.r. MeV p.r.
194Hg {syn.} 444 lata w.e. 0,040 194Au
196Hg 0,15% stabilny izotop z 116 neutronami
198Hg 9,97% stabilny izotop z 118 neutronami
199Hg 16,87% stabilny izotop z 119 neutronami
200Hg 23,1% stabilny izotop z 120 neutronami
201Hg 13,18% stabilny izotop z 121 neutronami
202Hg 29,86% stabilny izotop z 122 neutronami
203Hg {syn.} 46,6 dnia β 0,492 203Tl
204Hg 6,87% stabilny izotop z 124 neutronami
Niebezpieczeństwa
Karta charakterystyki: dane zewnętrzne firmy Sigma-Aldrich [dostęp 2011-10-05]
Globalnie zharmonizowany system
klasyfikacji i oznakowania chemikaliów
Na podstawie Rozporządzenia CLP, zał. VI[3]
Czaszka i skrzyżowane piszczele Zagrożenie dla zdrowia Środowisko
Niebezpieczeństwo
Zwroty H

H330, H360D, H372, H410

Zwroty P

P201, P260, P273, P284, P310, P501[8]

NFPA 704
Na podstawie
podanego źródła[4]
0
4
0
 
Numer RTECS

OV4550000

Jeżeli nie podano inaczej, dane dotyczą
warunków normalnych (0 °C, 1013,25 hPa)
Multimedia w Wikimedia Commons
Hasło w Wikisłowniku
Rtęć nalewana na szalkę Petriego

Rtęć (Hg, łac. hydrargyrum, z gr. ὑδράργυρος hydrargyros ‘wodne srebro’[9]) – pierwiastek chemiczny z grupy metali przejściowych. Uznana za pierwiastek przez Lavoisiera. Rtęć jest jedynym metalem występującym w warunkach normalnych w stanie ciekłym[c].

Rtęć występuje w skorupie ziemskiej w ilości 0,05 ppm.

Najważniejszymi minerałami rtęci są:

Właściwości

Rozpuszcza metale, tworząc amalgamaty (z wyjątkiem żelaza, platyny, wolframu i molibdenu). Wykazuje dużą lotność – w stanie nasycenia w temperaturze 20 °C w powietrzu znajduje się 14 mg Hg na m³[10]. Dawka progowa rtęci, czyli najwyższe stężenie uważane za bezpieczne, wynosi 0,05 mg Hg na m³ powietrza[potrzebny przypis], dlatego rozlana rtęć stanowi potencjalne niebezpieczeństwo zatrucia.

Zawartość rtęci w powietrzu w ng/cm³ (co odpowiada μg/dm³ i mg/m³) w stanie nasycenia dla różnych temperatur określa empiryczne równanie Dumareya[10]:

γ H g = D T 10 ( A + B T ) {\displaystyle \gamma _{Hg}={\frac {D}{T}}10^{-(A+{\frac {B}{T}})}}

gdzie:

A = −8,134459741
B = 3240,871534 K
D = 216522,61 K ng/cm³
T – temperatura w K

Kationy rtęci Hg2+
oraz Hg2+
2
różnią się właściwościami. W analizie chemicznej Hg2+
2
należy do I grupy kationów, natomiast Hg2+
– do II.

Otrzymywanie

Na skalę przemysłową rtęć otrzymuje się z cynobru, czyli siarczku rtęci(II), przez ogrzewanie w obecności powietrza[11]:

HgS + O
2
→ Hg↑ + SO
2

Proces ten przebiega w dwóch etapach[12]:

(1) 2HgS + 3O
2
→ 2HgO + 2SO
2
(2) 2HgO → 2Hg↑ + O
2

Inną metodą jest ogrzewanie HgS wobec reduktora, np. żelaza[11][12]:

HgS + Fe → Hg↑ + FeS

W warunkach laboratoryjnych rtęć można uzyskać poprzez ogrzewanie tlenku rtęci(II)[13].

Zastosowanie

Zastosowania historyczne

Rzymianie używali jej do ługowania piasków rzecznych, w celu wydobycia z nich srebra i złota. Tlenek rtęci(II) był głównym składnikiem czerwonej farby, stosowany był do szminkowania i malowania. W średniowieczu alchemicy próbowali stworzyć złoto przez połączenie siarki z rtęcią. Wolna rtęć pod nazwą żywego srebra była trzymana w domach bogaczy jako zabawka. W XVI wieku Paracelsus wprowadził związki rtęci do medycyny i farmacji.

Zastosowania rtęci metalicznej

Rtęć znalazła zastosowanie do wypełniania termometrów, barometrów, manometrów, pomp próżniowych itp. Duże ilości rtęci zużywane są w procesie zwanym amalgamacją[14] do wydobywania złota i srebra (zwłaszcza w złożach o dużym rozdrobnieniu kruszców; metale rozpuszczają się w rtęci, tworząc amalgamaty, z których są odzyskiwane przez odparowanie rtęci) oraz do elektrolizy litowców i produkcji materiałów wybuchowych.

Oprócz tego metaliczna rtęć jest stosowana:

W epoce wczesnonowożytnej (co najmniej od XVI wieku, do 1843 r.) rtęci używano do produkcji luster. W związku z tym wielu ludzi chorowało z powodu zatrucia tym metalem. Stosowano ją również do leczenia kiły, poprzez podawanie rtęci doustnie, w zastrzykach i przez nacieranie skóry.

Zastosowania związków rtęci

Wiele związków rtęci ma szerokie zastosowanie:

  • chlorek rtęci(I) – kalomel, stosowany jest w lecznictwie, do wyrobu elektrod, jako środek ochrony roślin;
  • chlorek rtęci(II) – sublimat, służy jako katalizator w syntezie organicznej, w metalurgii, w mikrobiologii, jako środek dezynfekujący;
  • piorunian rtęci – Hg(CNO)
    2
    ma zastosowanie do wyrobu spłonek i detonatorów;
  • odczynnik Nesslera (alkaliczny roztwór jodortęcianu potasu K
    2
    [HgI
    4
    ]
    ) – używany w chemii analitycznej do wykrywania jonów amonowych (NH+
    4
    );
  • do produkcji farb okrętowych.

Działanie biologiczne

Rtęć w formie: ciekłej, par i rozpuszczalnych związków jest trująca[15].

Rtęć wchłania się przez drogi oddechowe w postaci pary. Z płuc dostaje się do krwi, gdzie wnika do erytrocytów, w których jest utleniana. Pewne ilości rtęci wnikają też do mózgu i przenikają przez barierę łożyskową do krwi płodu. Wchłonięta w ten sposób rtęć jest wydalana z moczem i w niewielkim stopniu z kałem. Kumuluje się w nerkach, uszkadzając je.

Toksyczność rtęci polega na niszczeniu błon biologicznych i wiązaniu się z białkami. W ten sposób rtęć zakłóca wiele niezbędnych do życia procesów biochemicznych.

Ostre zatrucie oparami rtęci wywołuje zapalenie płuc i oskrzeli prowadzące niekiedy do śmiertelnej niewydolności oddechowej. Inne objawy to: krwotoczne zapalenie jelit, niewydolność krążenia, zapalenie błony śluzowej jamy ustnej. Uszkodzeniu ulegają również nerki i układ nerwowy.

Spożycie związków rtęci powoduje ślinotok, wymioty, krwawą biegunkę, martwicę błony śluzowej jelit. Pojawia się również pieczenie w przełyku. Podobnie jak w zatruciu drogą oddechową uszkodzone zostają nerki.

Zatrucie przewlekłe małymi ilościami rtęci powoduje początkowo niespecyficzne objawy takie jak ból głowy i kończyn, osłabienie. W późniejszym czasie dochodzi do zapaleń błon śluzowych przewodu pokarmowego, wypadania zębów i wystąpienia charakterystycznego niebiesko-fioletowego rąbka na dziąsłach. Obserwuje się też postępujące uszkodzenia ośrodkowego układu nerwowego: zaburzenia snu, upośledzenie koncentracji, zaburzenia pamięci, zmiany w osobowości. Później pojawiają się drżenia rąk i nóg, niezborność chodu. Charakterystycznym objawem jest zmiana charakteru pisma na tzw. „drżące pismo”. W zatruciu przewlekłym również obserwuje się uszkodzenie nerek.

Ze względu na toksyczne działanie rtęć i jej związki w Unii Europejskiej zostały uznane za substancje priorytetowe w dziedzinie polityki wodnej[16]. Zaliczana jest do grupy substancji uPBT (wszędobylskie, trwałe, podlegające bioakumulacji i toksyczne), a przekroczenie norm jej stężenia w wodzie lub organizmach wodnych jest najczęstszą przyczyną nieosiągania dobrego stanu chemicznego wód powierzchniowych[17].

Zobacz też

Uwagi

  1. Podana wartość stanowi przybliżoną standardową względną masę atomową (ang. abridged standard atomic weight) publikowaną wraz ze standardową względną masą atomową, która wynosi 200,592 ± 0,003.
  2. Wartość dla ciała stałego[7].
  3. W warunkach normalnych w stanie ciekłym występuje jeszcze jeden pierwiastek – brom; ciekłe są także niektóre stopy metali alkalicznych (np. K-Na) i galu (np. Ga-In-Sn) [za CRC Handbook of Chemistry and Physics. Wyd. 83. Boca Raton: CRC Press, 2003, s. 15-28.]


Zobacz kolekcję cytatów rtęć w Wikicytatach

Przypisy

  1. Mercury, [w:] PubChem [online], United States National Library of Medicine, CID: 23931  (ang.).
  2. Farmakopea Polska X, Polskie Towarzystwo Farmaceutyczne, Warszawa: Urząd Rejestracji Produktów Leczniczych, Wyrobów Medycznych i Produktów Biobójczych, 2014, s. 4276, ISBN 978-83-63724-47-4 .
  3. mercury (ang.) w wykazie klasyfikacji i oznakowania Europejskiej Agencji Chemikaliów. [dostęp 2015-04-10].
  4. Mercury (nr 215457) (ang.) – karta charakterystyki produktu Sigma-Aldrich (Merck KGaA) na obszar Stanów Zjednoczonych. [dostęp 2011-10-05]. (przeczytaj, jeśli nie wyświetla się prawidłowa wersja karty charakterystyki)
  5. ThomasT. Prohaska ThomasT. i inni, Standard atomic weights of the elements 2021 (IUPAC Technical Report), „Pure and Applied Chemistry”, 94 (5), 2021, s. 573–600, DOI: 10.1515/pac-2019-0603  (ang.).
  6. Mercury, [w:] GESTIS-Stoffdatenbank [online], Institut für Arbeitsschutz der Deutschen Gesetzlichen Unfallversicherung, ZVG: 008490 [dostęp 2019-11-07]  (niem. • ang.).
  7. a b Charles N.Ch.N. Singman Charles N.Ch.N., Atomic volume and allotropy of the elements, „Journal of Chemical Education”, 61 (2), 1984, s. 137, DOI: 10.1021/ed061p137 [dostęp 2021-02-16]  (ang.).
  8. Mercury (nr 215457) – karta charakterystyki produktu Sigma-Aldrich (Merck KGaA) na obszar Polski. [dostęp 2011-10-05]. (przeczytaj, jeśli nie wyświetla się prawidłowa wersja karty charakterystyki)
  9. hydrargyrum. dictionary.com. [dostęp 2018-07-11]. (ang.).
  10. a b RonnyR. Dumarey RonnyR. i inni, Elemental mercury vapour in air: the origins and validation of the ‘Dumarey equation’ describing the mass concentration at saturation, „Accreditation and Quality Assurance”, 15 (7), 2010, s. 409–414, DOI: 10.1007/s00769-010-0645-1 [dostęp 2021-02-16]  (ang.).
  11. a b Adam Bielański: Chemia ogólna i nieorganiczna. Warszawa: PWN, 1981, s. 646. ISBN 83-01-02626-X.
  12. a b Włodzimierz Trzebiatowski: Chemia nieorganiczna. Wyd. VIII. Warszawa: PWN, 1978, s. 478.
  13. Stanisław Tołłoczko, Wiktor Kemula: Chemia nieorganiczna z zasadami chemii ogólnej. Warszawa: PWN, 1954, s. 19.
  14. Amalgamacja. Słownik języka polskiego PWN. [dostęp 2021-02-27].
  15. rtęć, [w:] Encyklopedia PWN [online] [dostęp 2018-07-11] .
  16. Dyrektywa 2000/60/WE Parlamentu Europejskiego i Rady z dnia 23 października 2000 r. ustanawiająca ramy wspólnotowego działania w dziedzinie polityki wodnej (Dz.U. L 327 z 22.12.2000, s. 1) .
  17. European waters. Assessment of status and pressures 2018, Luksemburg: Publications Office of the European Union, 2018, s. 6, DOI: 10.2800/303664, ISBN 978-92-9213-947-6, ISSN 1977-8449 .

Bibliografia

  • Witold Seńczuk (red.): Toksykologia. Podręcznik dla studentów, lekarzy i farmaceutów Wydanie IV. Warszawa: Wydawnictwo Lekarskie PZWL, 2002. ISBN 83-200-2648-2.
  • Małgorzata Wiśniewska (red.): Encyklopedia dla wszystkich Chemia. Wydawnictwa Naukowo-Techniczne Warszawa, s. 332.

Star of life.svg Przeczytaj ostrzeżenie dotyczące informacji medycznych i pokrewnych zamieszczonych w Wikipedii.

  • p
  • d
  • e
D08: Środki antyseptyczne i dezynfekujące
D08A – Środki antyseptyczne
i dezynfekujące
D08AA – Pochodne akrydyny
D08AC – Biguanidy i amidyny
D08AE – Fenol i jego pochodne
D08AF – Pochodne nitrofuranu
  • nitrofural
D08AG – Preparaty zawierające jod
D08AH – Pochodne chinoliny
D08AJ – Czwartorzędowe
związki amoniowe
D08AK – Związki rtęci
  • amidochlorek rtęci
  • boran fenylortęci
  • chlorek rtęci
  • merbromin
  • metaliczna rtęć
  • tiomersal
  • jodek rtęci
D08AL – Związki srebra
D08AX – Inne
p  d  e
Układ okresowy pierwiastków
1 2   3[i] 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1 H   He
2 Li Be   B C N O F Ne
3 Na Mg   Al Si P S Cl Ar
4 K Ca   Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
5 Rb Sr   Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe
6 Cs Ba   La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn
7 Fr Ra   Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og
8 Uue Ubn  
  Ubu Ubb Ubt Ubq Ubp Ubh Ubs ...[ii]  
Metale alkaliczne Metale ziem
alkalicznych
Lantanowce Aktynowce Metale przejściowe Metale Półmetale Niemetale Halogeny Gazy szlachetne Właściwości
nieznane
  1. Alternatywnie do skandowców zalicza się często nie lutet i lorens, lecz lantan, aktyn oraz hipotetyczny unbiun.
  2. Budowa 8. okresu jest przedmiotem badań teoretycznych i dokładne umiejscowienie pierwiastków tego okresu w ramach układu okresowego jest niepewne.
Kontrola autorytatywna (pierwiastek chemiczny):
  • LCCN: sh85083794
  • GND: 4127830-6
  • NDL: 00571550
  • BnF: 11948174f
  • BNCF: 23566
  • NKC: ph125284
  • J9U: 987007565661705171
Encyklopedia internetowa: